博客
关于我
行为型模式第二组
阅读量:129 次
发布时间:2019-02-26

本文共 684 字,大约阅读时间需要 2 分钟。

解释器模式是软件开发中一个常用的设计模式,其核心思想是通过解释器来解释请求,进而分派到相应的处理逻辑中。这种模式在软件架构中具有重要的优势,尤其是在处理复杂业务逻辑时,能够提升代码的可维护性和扩展性。

在代码逻辑中,我们需要处理音阶和音符的组合。音阶的高低音由数字决定,数字越大音高越高。音符则由字母表示,且大小写无关。例如,"O"和"o"都代表音符O。音符和音阶的组合可以表示为:O 2 E 0.5 G 0.5 A 3 E 0.5,其中2代表中音,0.5代表半音。

在实际开发中,我们需要从字符串中提取音符和音阶信息,并将其转换为可操作的数据结构。可以通过字符串切割方法分割音符和音阶,根据对应的字母和数字生成相应的音符编号和音阶信息。

以下是一个示例代码片段:

// 代码片段示例const audioContext = new (window.AudioContext || window.webkitAudioContext)();const source = audioContext.createBufferSource();const buffer = audioContext.decodeAudioData(bufferAttribute);source.buffer = buffer;source.connect();

在实际应用中,可能会遇到类似的问题:未正确赋值属性,导致音频无法正常播放。解决方法是确保所有音频属性都被正确赋值,并使用适当的方法加载音频数据。

通过这种方式,我们可以实现音符和音阶的自动解释和处理,提升音乐生成和处理的效率。

转载地址:http://zetf.baihongyu.com/

你可能感兴趣的文章
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>